SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-2020

Program:	B E - Civil Engineering
Semester:	4
Course Code:	18 cv 45
Course Title:	Advanced Surveying
Credit / L-T-P:	$3 / 3-0-0$
Total Contact Hours:	50
Course Plan Author:	SHIVAPRASAD D G

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29 Hesaraghatta main road, Chimney hills, Chikkabanavara
Bangalore 560090. Ph 080-23721477
Www.skit.org Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview. 3
2. Course Content 3
3. Course Material 4
4. Course Prerequisites 5
5. Content for Placement, Profession, HE and GATE. 5
B. OBE PARAMETERS 5
6. Course Outcomes 5
7. Course Applications 6
8. Mapping And Justification. 6
9. Articulation Matrix 7
10. Curricular Gap and Content 7
11. Content Beyond Syllabus 8
C. COURSE ASSESSMENT 8
12. Course Coverage 8
13. Continuous Internal Assessment (CIA) 8
D1. TEACHING PLAN - 1 9
Module-1. 9
Module - 2 10
E1. CIA EXAM - 1. 11
a. Model Question Paper - 1 11
b. Assignment -1 12
D2. TEACHING PLAN - 2 13
Module - 3. 13
Module - 4 14
E2. CIA EXAM - 2 15
a. Model Question Paper - 2 15
b. Assignment - 2 15
D3. TEACHING PLAN - 3 16
Module - 5 16
E3. CIA EXAM - 3 17
a. Model Question Paper - 3 17
b. Assignment - 3 17
F. EXAM PREPARATION 18
14. University Model Question Paper 18
15. SEE Important Questions 19

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CV
Year / Semester:	$2019 /$ IV	Academic Year:	$2019-20$
Course Title:	Advanced Surveying	Course Code:	18 CV45
Credit / L-T-P:	$3 / 3-0-0$	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	SHIVAPRASAD D G	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	78%	SEE Target:	70%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

$\begin{gathered} \text { Modul } \\ e \end{gathered}$	Content	$\begin{array}{\|c} \text { Teachi } \\ \text { ng } \\ \text { Hours } \\ \hline \end{array}$	Identified Module Concepts	Blooms Learning Levels
1	Curves - Necessity - Types, Simple curves, Element Designation of curves, Setting out simple curves by linear methods (numerical problems on offsets from long chord \& chord produced method), Setting out curves by Rankines deflection angle method (numerical problems). Compound curves, Elements, Design of compound curves, Setting out of compound curves (numerical problems). Reverse curve between two parallel straights (numerical problems on Equal radius and unequal radius). Transition curves Characteristics, numerical problems on Length of Transition curve, Vertical curves -Types - (theory).	10	Rankines deflection	L5
2	Geodetic Surveying: Principle and Classification of triangulation system, Selection of base line and stations, Orders of triangulation, Triangulation figures, Reduction to Centre, Selection and marking of stations Theory of Errors: Introduction, types of errors, definitions, laws of accidental errors, laws of weights, theory of least squares, rules for giving weights and distribution of errors to the field observations, determination of the most probable values of quantities.	10	Triangulation system	L3
3	Earth, celestial sphere, earth and celestial Coordinate systems, spherical triangle, astronomical triangle, Napier's rule Introduction, Uses,	10	Celestial coordinate system	L5
4	Aerial photographs, Definitions, Scale of vertical and tilted photograph (simple problems), Ground Co\&ordinates (simple problems),Relief Displacements(Derivation),Ground control, Procedure of aerial survey, overlaps and mosaics, Stereoscopes, Derivation Parallax.	10	Aerial survey	L5
5	Introduction, Electromagnetic spectrum, Electromagnetic distance measurement, Total station, Lidar scanners for topographical survey. Remote Sensing: Introduction, Principles of energy interaction in atmosphere and earth surface features, Image interpretation techniques, visual interpretation. Digital	10	Electromagne tic spectrum	L5

	image processing, Global Positioning system Geographical Information System: Definition of GIS, Key Components of GIS, Functions of GIS, Spatial data, spatial information system Geo-spatial analysis, Integration of Remote sensing and GIS and Applications in Civil Engineering(transportation, town planning).			
-	Total	$\mathbf{5 0}$	-	

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	B.C. Punmia, "Surveying Vol.2", Laxmi Publications pvt. Ltd., New Delhi.	1, 2, 3, 4	In Dept
$\begin{gathered} 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	Kanetkar T P and S V Kulkarni , Surveying and Levelling Part 2, Pune Vidyarthi Griha Prakashan	1,2, 3, 4	In dept
$\begin{gathered} 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	K.R. Arora, "Surveying Vol. 1" Standard Book House, New Delhi.	1, 2, 3, 4	In Dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	S.K. Duggal, "Surveying Vol.I \& II", Tata McGraw Hi ll Publishing Co. Ltd. New Delhi.	1, 2, 3, 4	In Lib
1, 2	R Subramanian, Surveying and Leveling, Second edition, Oxford University Press, New Delhi.	1,2, 3, 4	Not Available
3, 4, 5	David Clerk, Plane and Geodetic Surveying Vol1 and Vol2, CBS publishers	1, 2, 3, 4	In lib
3, 4, 5	B Bhatia, Remote Sensing and GIS , Oxford University Press, New Delhi.	1, 2, 3, 4	In lib
C	Concept Videos or Simulation for Understanding	-	-
C1	https://youtu.be/GkFgysZC4Vc		
C2			
C3			
C4			
C5			
C6			
C7			
C8			
C9			
C10			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-

F	Others (Web, Video, Simulation, Notes etc.)	-	-
$?$			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content ...

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	17 CV 36	Basic Surveying	1. Knowledge on Surveying appications	3		L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
-	-	-	-	-

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	$\begin{array}{\|c\|} \hline \text { Assessme } \\ \text { nt } \\ \text { Method } \end{array}$	Blooms' Level
1	18CV45.1	Set out simple curves by linear methods	5	Simple Circular Curve	Lecture	CIA and Assignme nt	$\begin{gathered} \mathrm{L} 5 \\ \text { Design } \end{gathered}$
1	18CV45.2	Reverse curve between two parallel straights	5	Reverse curve	Lecture/ Tutorial	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$
2	18CV45.3	Understand the Triangulation figures	5	Triangulati ons	Lecture	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$
2	18CV45.4	Understand the Theory of errors	5	Theory of errors	Lecture	CIA and Assignme nt	$\begin{gathered} \mathrm{L} 5 \\ \text { Design } \end{gathered}$
3	18CV45.5	Understand the celestial sphere of earth	5	Celestial Sphere	Lecture	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$
3	18CV45.6	Understand the astonomical triangle	5	astonomic al triangle	Lecture/ Tutorial	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$
4	18CV45.7	Understand the Scale of vertical and tilted photograph	5	tilted photograp h	Lecture/ Tutorial	CIA and Assignme nt	$\begin{gathered} \mathrm{L} 5 \\ \text { Design } \end{gathered}$
4	18CV45.8	Understand the aerial survey	5	aerial survey	Lecture/ Tutorial	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$
5	18CV45.9	Understand the Electromagnetic spectrum	5	Electroma gnetic spectrum	Lecture	CIA and Assignme nt	$\begin{gathered} \text { L5 } \\ \text { Design } \end{gathered}$

COURSE PLAN - CAY 2019-20

5	18CV45.10	Understand the Functions of GIS	5	GIS	Lecture	CIA and Assignme nt	L5 Design
-	-	Total	$\mathbf{5 0}$	-	-	-	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Understanding the surveying applications	CO 1	L 3
1	Students are able to Design curves	CO 2	L 5
2	Understanding the surveying applications	CO 3	L 5
2	Understanding the surveying applications	CO 4	L 5
3	Measure and calculations of earth and celestial coordinates	CO 5	L 5
3	Measure and calculations of earth and celestial coordinates	CO	L 5
4	To conduct aerial survey	CO 7	L 5
4	To conduct aerial survey	CO	L 5
5	Usage of modern surveying instruments	CO 9	L 5
5	Usage of modern surveying instruments	CO 10	L 5

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	Lev el
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment’	-
1	CO1	PO1	1	Engineering knowledge on setting of curves	L3
1	CO 1	PO 2	1	Analyses of problems on setting on curves	L4
1	CO 2	PO1	1	Engineering knowledge on design and implement the different types of curves for deviating type of alignments.	L5
2	CO 2	PO 2	1	Analyses of problems on design and implement the different types of curves for deviating type of alignments.	L5
2	CO 3	PO1	1	Engineering knowledge on geometric- principles to arrive at surveying problems.	L5
2	CO 3	PO 2	1	Analyses of problems on geometric- principles to arrive at surveying problems.	L5
2	CO 4	PO1	1	Engineering knowledge on geometric- principles to arrive at surveying problems.	L5
2	CO 4	PO 2	1	Analyses of problems on geometric- principles to arrive at surveying problems.	L5
3	CO 5	PO1	1	Engineering knowledge on capture geodetic data to process and perform analyses for survey problems with the use of electronic instruments.	L5
3	CO 5	PO 2	1	Analyses of problems on capture geodetic data to process and perform analyses for survey problems with the use of electronic instruments.	L5
3	CO6	PO1	1	Engineering knowledge on capture geodetic data to process and perform analyses for survey problems with the use of electronic instruments.	L5
3	CO6	PO 2	1	Analyses of problems on capture geodetic data to process and perform analyses for survey problems with the use of electronic instruments.	L5
4	CO 7	PO1	1	Engineering knowledge on use modern instruments to obtain geo- spatial data and analyze the same to appropriate engineering problems.	L5
4	CO 7	PO 2	1	Analyses of problems on use modern instruments to obtain geo-	L5

				spatial data and analyze the same to appropriate engineering problems.	
4	C08	PO1	1	Engineering knowledge on use modern instruments to obtain geo- spatial data and analyze the same to appropriate engineering problems.	L5
4	C08	PO 2	1	Analyses of problems on use modern instruments to obtain geospatial data and analyze the same to appropriate engineering problems.	L5
4	COg	PO1	1	Engineering knowledge on use modern instruments to obtain geo- spatial data and analyze the same to appropriate engineering problems.	L5
4	COg	PO 2	1	Analyses of problems on use modern instruments to obtain geospatial data and analyze the same to appropriate engineering problems.	L5
5	CO10	PO1	1	Engineering knowledge on use modern instruments to obtain geo- spatial data and analyze the same to appropriate engineering problems.	L5
5	CO10	PO 2	1	Analyses of problems on use modern instruments to obtain geospatial data and analyze the same to appropriate engineering problems.	L5

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to . .	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$				$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 8 \end{gathered}$	PO	10	PO	$\begin{gathered} \mathrm{PO} \\ 12 \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{PS} \\ \mathrm{O} 1 \end{array}$	$\begin{array}{l\|} \hline \mathrm{PS} \\ \mathrm{O} 2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O} 3 \end{aligned}$	Lev
1	18CV45.1																	
1	18CV45.2	Reverse curve between two parallel straights	2	3	-	-	-	-	-	-	-	-	-	-				L4
2	18CV45.3	Understand the Triangulation figures	2	3	-	-	-	-	-	-	-	-	-	-				L2
2	18CV45.4	Understand the Theory of errors	2	3	-	-	-	-	-	-	-	-	-	-				L4
3	18CV45.5	Understand the celestial sphere of earth	2	3	-	-	-	-	-	-	-	-	-	-				L2
3	18CV45.6	Understand the astronomical triangle	2	3	-	-	-	-	-	-	-	-	-	-				L4
4	18CV45.7	Understand the Scale of vertical and tilted photograph	2	3	-	-	-	-	-	-	-	-	-	-				L2
4	18CV45.8	Understand the aerial survey	2	3	-	-	-	-	-	-	-	-	-	-				L4
5	18CV45.9	Understand the Electromagnetic spectrum	2	3	-	-	-	-	-	-	-	-	-	-				L2
5	18CV45.10	Understand the Functions of GIS	2	3	-	-	-	-	-	-	-	-	-	-				L4
-	18CV45PC	Average attainment (1, 2, or 3)	2	3														-

- PO, PSO 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1						
1						
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ule \#	Title		No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Curve Surveying	10	4	-	-	1	1	2	CO1, CO2	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 4, \mathrm{~L} \\ 5 \end{gathered}$
2	Geodetic Surveying and Theory of Errors	10	4	-	-	1	1	2	$\mathrm{CO}_{3, \mathrm{CO}}^{4}$	$\begin{gathered} \mathrm{L}, \mathrm{~L} 4, \mathrm{~L} \\ 5 \end{gathered}$
3	Introduction to Field Astronomy	10	-	4	-	1	1	2	CO5, CO6	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 4, \mathrm{~L} \\ 5 \end{gathered}$
4	Aerial Photogrammetry	10	-	4	-	1	1	2	CO7, CO8	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 4, \mathrm{~L} \\ 5 \end{gathered}$
5	Modern Surveying Instruments	10	-	-	8	1	1	2	CO9, CO10	$\begin{gathered} \text { L2,L4,L } \\ 5 \end{gathered}$
-	TOTAL	50	8	8	8	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1, CO2, CO3, CO4	L2, L3, L2, L4
3,4	CIA Exam - 2	30	CO5, C06, CO7, C08	L2, L4, L2, L4
5	CIA Exam - 3	30	CO9, CO10	L2, L4
	Assignment - 1	10	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L2, L3, L2, L4

3,4	Assignment -2	10	CO5, CO6, CO7, CO8	L2, L4, L2, L4
5	Assignment -3	10	CO9, CO10	L2, L4
	Final CIA Marks	$\mathbf{4 0}$	$\mathbf{-}$	$\mathbf{-}$

D1. TEACHING PLAN - 1

Module - 1

Title:	Curve Surveying	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:		Level
1	Set out simple curves by linear methods	CO1	L5
2	Reverse curve between two parallel straights	CO 2	L5
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Curves - Necessity - Types, Simple curves, Element Designation of curves,	C01	L3
2	Setting out simple curves by linear methods (numerical problems on offsets from long chord \& chord produced method)	C01	L3
3	Setting out curves by Rankines deflection angle method (numerical problems). Compound curves,	C01	L3
4	Elements, Design of compound curves, Setting out of compound	C01	L3
5	numerical problems	C01	L5
6	Reverse curve between two parallel straights	C01	L3
7	numerical problems on Equal radius and unequal radius	C01	L5
8	Transition curves Characteristics	C01	L3
9	numerical problems on Length of Transition curve	C01	L5
10	Vertical curves -Types - (theory).	C01	L3
c	Application Areas	CO	Level
1	Understanding the surveying applications	CO1	L3
d	Review Questions	-	-
1	Explain the following along with a neat sketch : i) Forward tangent ii) Point of curve iii) Deflection angle iv) Apex distance.	CO1	L2
2	Two tangents intersect at a chainage of 1 l gom, the deflection angle 36° Compute all the data necessary to set out a curve of radius 300 m by deflection angle method. The peg interval is 30m. Tabulate the results,	CO1	L3
3	A reverse curve is to be set out to connect two parallel railway line 30 m apart. The distance between the tangent points is 150 m . Both the arcs have the same radius. The curve is set out by method of ordinates from long chord	CO2	L4

	taking a peg interval of 10m. Calculate the necessary data for setting the curve		
4	List the requirements of a transition curve (any four).	CO 2	L3
5	With a neat sketch, list any four vertical curves.	CO 2	L3
6	Define curve ? Establish the relationship between degree of a curve and its radius	CO 2	L3
7	Two tangents intersect each other at a chainage of $50+60$, deflection angle being $50^{\prime \prime} 30^{\prime}$. its required to connect two tangents by a simple curve of 15 chain radius. Taking peg inetrval of 100 links, calculate the necessary data for setting out the curve by Rankines method of deflection angle. Take length of the chain as $20 \mathrm{~m}=100$ links. Also write brief procedure for setting out the curve.	CO 2	L5
8	Distinguish between a compound curve and reverse curve with neat sketches.	CO 2	L3
9	A compound curve consists of two simple circular radii 350 m and 500 m respectively and is to be laid out between two tangents T_{1} and IT . PQ is common tangent and D is the point of compound curvature. The angles <IpQ and <IQP are 55° and 25° respectively. Given chainage of point of intersection as 1800.00 m , calculate the chainage of $\mathrm{T}, \mathrm{T} 2$ and D .	CO 2	L5

Module - 2

Title:	Geodetic Surveying and Theory of Errors	Appr Time:	10 Hrs
A	Course Outcomes	-	Blooms
-	The student should be able to:		Level
1	Understand the Triangulation figures	CO_{3}	L3
2	Understand the Theory of errors	CO 4	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	Geodetic Surveying: Principle and Classification of triangulation system	CO 2	L3
12	Selection of base line and stations	CO2	L3
13	Orders of triangulation, Triangulation figures	CO 2	L3
14	Reduction to Center, Selection and marking of stations	CO 2	L3
15	Theory of Errors: Introduction, types of errors	CO 2	L3
16	definitions, laws of accidental errors	CO 2	L3
17	laws of weights, theory of least squares	CO 2	L3
18	rules for giving weights and distribution of errors to the field observations	CO2	L3
19	determination of the most probable values of quantities.	CO 2	L3
20	determination of the most probable values of quantities.	CO2	L3
c	Application Areas	CO	Level
1	Understanding the surveying applications	CO1	L3
2	Students are able to Design curves	CO 2	L4
d	Review Questions	-	-
10	Mention the points to be considered in the selection of triangular station	CO_{3}	L1
11	Triangulation station B was used in measuring angies and the instrument as necessary to shift to a satellite station S due south of main station B at a distance of 12.2111 from it. The line BS bisects the exterior angle A, B, C and the angles ASB and BSC were observed to be $30^{\circ} 20^{\prime} 30^{\prime \prime}$ and $29^{\circ} 45^{\prime} 66^{\prime \prime}$. When the station B was observed angles CAB and ACB were observed to be $59^{\circ} 18^{\prime} 26^{\prime \prime}$ and $60^{\circ} 26^{\prime} 122^{\prime \prime}$. The side AC computed to be 4248.5 m from the adjacent triangle. Determine the correct value of the angle ABC	CO3	L3
12	Explain the three kinds of errors.	CO_{3}	L3
13	The observed values of P, Q and Rat a station the angles being subjected to the condition that $P+Q=R$. $P=30^{\circ} 12^{\prime} 28.2^{\prime \prime} Q=35^{\circ} 48^{\circ} 12.6^{\prime \prime} \mathrm{R}=66^{\circ} \mathrm{O}^{\prime} 44.4^{\prime \prime}$	CO318'	L4

	Find the most probable value of P, Q and R.		
14	Explain the probability curve.	CO_{3}	L2
15	What are important factors considered to be in selection of site for a base line?	CO 4	L3
16	From a triangulation sat elite stations $Q_{5.80 \mathrm{~m}}$ away from the main station A , the following observations were observed; A = $0^{\circ} 0^{\prime} 0$ ", B= $132^{\circ} 18^{\prime} 30^{\prime \prime}, 232^{\circ} 24^{\prime} 6^{\prime \prime}, \mathrm{D}=296^{\circ} 6^{\prime} 11^{\prime \prime}$, the inter connected base line AB. AC \& AD were measured as $3265.50 \mathrm{~m}, 4022.20 \mathrm{~m}$ and 3086.40 m respectively. Determine the directions of $A B, A C, A D$	CO 4	L5
17	Define the terms: a) true error b) residual error c) conditioned equation d) indirect observation.	CO 4	L2
18	The observed angles α, β and γ from a station P with probable errors of measurement are given below: $\alpha=78^{\circ} 12^{\prime} 12^{\prime \prime} \pm 12^{\prime \prime}, \beta=136^{\circ} 48^{\prime} 34^{\prime \prime} \pm 4^{\prime \prime}, \gamma+144^{\circ} 59^{\prime} 8^{\prime \prime} \pm 5^{\prime \prime}$ determine their corrected values.	CO 4	L5
e	Experiences	-	-
1			
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs Code:		: 18CV45	Sem:		Mark	30	ime: 75 m	75 minutes		
Cour		Advanced surveying								
		Note: Answer any 2						Marks	CO	Lev
1	a	Explain the following along with a neat sketch : i) Forward tangent ii) Point of curve iii) Deflection angle iv) Apex distance.						8	CO1	L2
	b	A reverse curve is to be set out to connect two parallel railway line 30m apart. The distance between the tangent points is 150 m . Both the arcs have the same radius. The curve is set out by method of ordinates from long chord taking a peg interval of 10m. Calculate the necessary data for setting the curve						7	CO 2	L4
2	a	With a neat sketch, list any four vertical curves							CO	
	b	Two tangents intersect each other at a chainage of $50+60$, deflection angle being $50^{\circ} 30^{\prime}$. its required to connect two tangents by a simple curve of 15 chain radius. Taking peg inetrval of 100 links, calculate the necessary data for setting out the curve by Rankines method of deflection angle. Take length of the chain as $20 \mathrm{~m}=100$ links. Also write brief procedure for setting out the curve.						8	CO2	L4
3	a	Mention the points to be considered in the selection of triangular station						7	CO	L2
	b	Triangulation station B was used in measuring angies and the instrument as necessary to shift to a satellite station S due south of main station B at a distance of 12.2111 from it. The line BS bisects the exterior angle A, B, C and the angles ASB and BSC were observed to be $30^{\circ} 20^{\prime} 30^{\prime \prime}$ and $29^{\circ} 45^{\prime}$ 6 ". When the station B was observed angles $C A B$ and $A C B$ were observed to be $59^{\circ} 18^{\prime} 26^{\prime \prime}$ and $60^{\circ} 26^{\prime} 12^{\prime \prime}$. The side AC computed to be 4248.5 m from the adjacent triangle. Determine the correct value of the angle $A B C$.						8	CO_{4}	L4
4	a	What are important factors considered to be in selection of site for a base line?						7	CO_{3}	L2
		The observed angles α, β and γ from a station P with probable errors of measurement are given below: $\alpha=78^{\circ} 12^{\prime} 12^{\prime \prime} \pm 12^{\prime \prime}, \beta=136^{\circ} 48^{\prime} 34^{\prime \prime} \pm 4^{\prime \prime}, \gamma+144^{\circ} 59^{\prime} 8^{\prime \prime} \pm 5^{\prime \prime}$ determine their corrected values.						8	CO 4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18CV45 Sem:	4	Marks:	$10 / 10$	Time:	$90-120$ minutes	
Course:	Advanced surveying						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Explain the following along with a neat sketch : i) Forward tangent ii) Point of curve iii) Deflection angle iv) Apex distance.	10	CO 2	L2
2		Two tangents intersect at a chainage of 1 lgom , the deflection angle 36°. Compute all the data necessary to set out a curve of radius 300 m by deflection angle method. The peg interval is 30m. Tabulate the results.	10	CO1	L3
3		A reverse curve is to be set out to connect two parallel railway line 30m apart. The distance between the tangent points is 150 m . Both the arcs have the same radius. The curve is set out by method of ordinates from long chord taking a peg interval of 10 m . Calculate the necessary data for setting the curve	10	CO 2	L3
4		List the requirements of a transition curve (any four).	10	CO 2	L2
5		With a neat sketch, list any four vertical curves.	10	CO 2	L3
6		Define curve? Establish the relationship between degree of a curve and its radius	10	CO 2	L2
7		Two tangents intersect each other at a chainage of $50+60$, deflection angle being $50^{*} 30^{\prime}$. its required to connect two tangents by a simple curve of 15 chain radius. Taking peg inetrval of 100 links, calculate the necessary data for setting out the curve by Rankines method of deflection angle. Take length of the chain as $20 \mathrm{~m}=100$ links. Also write brief procedure for setting out the curve.	10	CO 2	L3
8		Distinguish between a compound curve and reverse curve with neat sketches.	10	CO 2	L2
9		A compound curve consists of two simple circular radii 350 m and 500 m respectively and is to be laid out between two tangents T_{1} and IT2. PQ is common tangent and D is the point of compound curvature. The angles <lpQ and <lQP are 55° and 25° respectively. Given chainage of point of intersection as 1800.00 m , calculate the chainage of $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and D.	10	CO 2	L3
10		Mention the points to be considered in the selection of triangular station	10	CO1	L3
11		Triangulation station B was used in measuring angies and the instrument as necessary to shift to a satellite station S due south of main station B at a distance of 12.2111 from it. The line BS bisects the exterior angle A, B, C and the angles ASB and BSC were observed to be 30° $20^{\prime} 30^{\prime \prime}$ and $29^{\circ} 45^{\prime} 6 "$. When the station B was observed angles CAB and ACB were observed to be $59^{\circ} 18^{\prime} 26^{\prime \prime}$ and $60^{\circ} 26^{\prime} 12^{\prime \prime}$. The side AC computed to be 4248.5 m from the adjacent triangle. Determine the correct value of the angle ABC.	10	CO1	L3
12		Explain the three kinds of errors.	10	CO 2	L3
13		The observed values of P, Q and Rat a station the angles being subjected to the condition that $P+Q=R$. $P=30^{\circ} 12^{\prime} 28.2^{\prime \prime} Q=35^{\circ} 48^{\circ} 12.6^{\prime \prime} \mathrm{R}=66^{\circ} \mathrm{O}^{\prime} 44.4^{\prime \prime}$ Find the most probable value of P, Q and R.	10	CO 2	L3

9	Explain the probability curve.	10	CO 2	L3
10	What are important factors considered to be in selection of site for a base line?	10	CO 2	L3
11	From a triangulation sat elite stations $Q 5.80 \mathrm{~m}$ away from the main station A , the following observations were observed; $A=0^{\circ} 0^{\prime} 0^{\prime \prime}, B=132^{\circ} 18^{\prime} 30^{\prime \prime}, 232^{\circ} 24^{\prime} 6^{\prime \prime}, \mathrm{D}=296^{\circ} 6^{\prime} 11^{\prime \prime}$, the inter connected base line AB. AC \& AD were measured as $3265.50 \mathrm{~m}, 4022.20 \mathrm{~m}$ and 3086.40 m respectively. Determine the directions of $A B, A C, A D$	10	CO 2	L3
12	Define the terms: a) true error b) residual error c) conditioned equation d) indirect observation.	10	CO 2	L3
13	The observed angles α, β and γ from a station P with probable errors of measurement are given below; $\alpha=78^{\circ} 12^{\prime} 12^{\prime \prime} \pm 12^{\prime \prime}, \beta=136^{\circ} 48^{\prime} 34^{\prime \prime} \pm 4^{\prime \prime}, \gamma^{+} 144^{\circ} 59^{\prime} 8^{\prime \prime} \pm 5^{\prime \prime}$ determine their corrected values.	10	CO1	L3

D2. TEACHING PLAN - 2

Module - 3

Title:	Introduction to Field Astronomy	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the celestial sphere of earth	CO_{5}	L5
2	Understand the astonomical triangle	CO6	L5
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction about Earth	CO_{5}	L5
2	celestial sphere	CO 5	L5
3	earth and celestial coordinate systems	CO_{5}	L5
4	celestial coordinate systems	CO_{5}	L5
5	celestial coordinate systems	CO6	L5
6	spherical triangle	CO6	L5
7	astronomical triangle	CO6	L5
8	Napier's rule	CO6	L5
9	Numerical problems	CO6	L5
10	Numerical problems	CO6	L5
C	Application Areas	CO	Level
1	Measure and calculations of earth and celestial coordinates	CO 3	L4
d	Review Questions	-	-
1	Define the following terms : i) Zenith and Nadir ii) Prime vertical iii) Hour angle.	CO 3	L3
2	Mention the properties of a spherical triangle.	CO_{3}	L3
3	Find the shortest distance between two points A \& B, given A latitude $-18^{\circ} 24^{\prime} \mathrm{N}$ longitude $36^{\circ} 18 \mathrm{E}$ B latitude $-68^{\circ} 32^{\prime} \mathrm{N}$ longitude $126^{\circ} 34 \mathrm{E}$.	CO 3	L3
4	Define the following : i) Vertical circle ii) Azimuth iii) Altitude.	CO_{3}	L3
5	Explain Ecliptic and Solstices	CO_{3}	L3
6	Find the shortest distance between two places A \& B given that the longitudes of A and B are $15^{\circ} \mathrm{O}^{\prime} \mathrm{N}$ and $12^{\circ} \cdot 6^{\prime} \mathrm{N}$ and longitudes are 50° $12^{\prime} \mathrm{E}$ and $54^{\circ} \mathrm{O}^{\prime} \mathrm{E}$ respectively.	CO 3	L5
7	Define the terms: I) celestial sphere ii) hour angle iii) prime vertical iv) latitude of a place	CO 3	L3

8	Find the shortest distance between two places A and B given that their latitudes are $12^{\circ} \mathrm{N}$ and $13^{\circ} \mathrm{O} 4^{\prime} \mathrm{N}$ with respective longitudes $72^{\circ} 32^{\prime} \mathrm{E}$ and $80^{\circ} 12^{\prime} \mathrm{E}$	CO 3	L 4
9	Briefly explain the solution of spherical triangle by napiers rule of circular parts	CO 3	L 3
10	The standard time meridian in India is $80^{\circ} 30^{\prime} \mathrm{E}$. if the standard time of place is $20^{\mathrm{H}} 24^{\mathrm{M}} 06^{\mathrm{S},}$ find the local mean time of two places having the longitudes $\mathrm{as} 20^{\circ} \mathrm{E}$ and $20^{\circ} \mathrm{W}$ respectively.	CO 3	L 5
\mathbf{e}	Experiences		
2			-

Module - 4

Title:	Aerial Photogrammetry	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	capture geodetic data to process and perform analyses for survey problems with the use of electronic instruments.	CO7	L4
2		CO8	L5
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction, Uses,, Definitions,	CO4	L2
2	Aerial photographs	CO 4	L2
3	Scale of vertical photograph	CO_{4}	L4
4	Scale of tilted photograph	CO 4	L4
5	simple problems	CO 4	L3
6	Ground Co-ordinates (simple problems)	CO_{4}	L3
7	Relief Displacements (Derivation)	CO4	L3
8	Ground control, Procedure of aerial survey, overlaps	CO 4	L3
9	mosaics, Stereoscopes	CO4	L2
10	Derivation Parallax	CO 4	L3
c	Application Areas	CO	Level
1	To conduct aerial survey	CO4	L3
d	Review Questions	-	-
1	Define the following terminologies i) Exposure station ii) Picture plane iii) Perspective centre.	CO7	L3
2	Mention the general features of Photographic images.	CO7	L3
3	Find the number of photographLrs (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60% and the side overlap is 30% scale the photograph is lcm $=150 \mathrm{~m}$.	CO7	L3
4	Derive an expression for relief displac \sim ment on a vertical photograph.	CO7	L3
5	Explain the procedure for aerial survey.	CO7	L3
6	A vertical photograph was taken at a altitude of 1200 meters above mean sea level. Determine the scale of the photograph for a terrain lying at elevations of 80 meters and 300 meters if the focal length oft he camera is 15 cm .	CO7	L3
7	With a neat sketch, derive the expression for the scale of a vertical photograph.	CO7	L3
8	A line AB 2.00 KM long, laying at an elevation of 500 m measure 8.65 cm	CO7	L3

	On a vertical photograph of focal length of 20cm. Determine the scale of the photograph at an average elevation of 800m.		
9	Define the terms: I) Tilt ii) Exposure stations iii) Principal point iv) ISO centre.	CO	L 3
10	Mention the reasons for photograph over lap. Justify the same.	CO 7	L 3
\mathbf{e}	Experiences	-	-
1		L,	
2			
3			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code:		: 18CV45	Sem:	4	Marks:	30	Time:	75 minutes			
Course:		Advanced Surveying									
-	-	Note: Answer any 2 questions, each carry equal marks.							Marks	CO	Level
1	a	Mention the properties of a spherical triangle.							8	CO_{3}	L2
	b	Find the shortest distance between two points A \& B, given A latitude - $18^{\circ} 24^{\prime} \mathrm{N}$ longitude $36^{\circ} 18 \mathrm{E}$ B latitude - $68^{\circ} 32^{\prime} \mathrm{N}$ longitude $126^{\circ} 34 \mathrm{E}$.							7	CO_{3}	L4
2	a	Find the shortest distance between two places A \& B given that the longitudes of A and B are $15^{\circ} \mathrm{O} \mathrm{N}$ and $12^{\circ} \cdot 6^{\prime} \mathrm{N}$ and longitudes are 50° $12^{\prime} \mathrm{E}$ and $54^{\circ} \mathrm{O}^{\prime} \mathrm{E}$ respectively.							8	CO_{3}	L5
	b	Define the terms: I) celestial sphere ii) hour angle iii) prime vertical iv) latitude of a place							7	CO 3	L2
3	a	Mention the general features of Photographic images.							8	CO 4	L3
	b	Find the number of photography (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60% and the side overlap is 30% scale the photograph is lcm $=150 \mathrm{~m}$.							7	CO 4	L4
4	a	A line AB 2.00 KM long, laying at an elevation of 500 m measure 8.65 cm on a vertical photograph of focal length of 20 cm . Determine the scale of the photograph at an average elevation of 800m.							8	CO 4	L5
	b	Define the terms: I) Tilt ii) Exposure stations iii) Principal point iv) ISO center.							7	CO 4	L2

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

	that their latitudes are $12^{\circ} \mathrm{N}$ and $13^{\circ} 04^{\prime} \mathrm{N}$ with respective longitudes $72^{\circ} 32^{\prime} E$ and $80^{\circ} 12^{\prime} E$			
9	Briefly explain the solution of spherical triangle by napiers rule of circular parts	10	CO 4	L3
10	The standard time meridian in India is $80^{\circ} 30^{\prime} \mathrm{E}$. if the standard time of place is $\quad 20^{\mathrm{H}} 24^{\mathrm{M}} 06^{\mathrm{S}}$, find the local mean time of two places having the longitudes as $20^{\circ} \mathrm{E}$ and $20^{\circ} \mathrm{W}$ respectively.	10	CO 4	L3
11	Define the following terminologies i) Exposure station ii) Picture plane iii) Perspective centre.	10	CO 4	L2
12	Mention the general features of Photographic images.	10	CO 4	L2
13	Find the number of photographLrs (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60\% and the side overlap is 30% scale the photograph is $\mathrm{lcm}=150 \mathrm{~m}$.	10	CO 4	L5
9	Derive an expression for relief displac~ment on a vertical photograph.	10	CO 4	L3
10	Explain the procedure for aerial survey.	10	CO 4	L3
11	A vertical photograph was taken at a altitude of 1200 meters above mean sea level. Determine the scale of the photograph for a terrain lying at elevations of 80 meters and 300 meters if the focal length oft he camera is 15 cm .	10	CO 4	L5
12	With a neat sketch, derive the expression for the scale of a vertical photograph.	10	CO 4	L3
13	A line AB 2.00 KM long, laying at an elevation of 500 m measure 8.65 cm on a vertical photograph of focal length of 20 cm . Determine the scale of the photograph at an average elevation of 800 m .	10	CO 4	L4
14	Define the terms: I) Tilt ii) Exposure stations iii) Principal point iv) ISO centre.	10	CO 4	L2
15	Mention the reasons for photograph over lap. Justify the same.	10	CO 4	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Modern surveying instruments	Appr Time:	16 Hrs
\mathbf{a}	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	use modern instruments to obtain geo- spatial data and analyze the same to appropriate engineering problems.	CO 5	L 4
\mathbf{b}	Course Schedule	CO	Level
Class No	Module Content Covered	CO 5	L 2
1	Introduction, Electromagnetic spectrum, Electromagnetic distance measurement, Total station,	CO 5	L 3
2	Lidar scanners for topographical survey. Remote Sensing: lntroduction,	CO 5	L 3
3	Principles of energy interaction in atmosphere and earth surface features	CO 5	L 4
4	Image interpretation techniques, visual interpretation.	CO 5	L 2
5	Digital image processing	CO	L 4
6	Global Positioning system Geographical Information System	CO	L 4
7	Definition of GIS, Key Components of GIS, Functions of GIS, Spatial data,	CO 5	L 4
8	spatial information system Geo-spatial analysis		

9	Integration of Remote sensing and GIS and Applications in Civil Engineering(transportation, town planning)	CO 5	L 4
10	Integration of Remote sensing and GIS and Applications in Civil Engineering(transportation, town planning)	CO 5	L 4
\mathbf{c}	Application Areas	CO	Level
1	Usage of modern surveying instruments	CO 5	L 3
\mathbf{d}	Review Questions	-	-CO 5
1	Mention the advantages of total station and also discuss the working principles of the same.	L 1	
2	Define Remote sensing. Explain the stages of idealized remote sensing system.	L 3	
3	What is GIS? Enumerate on GIS applications in civil engineering.	CO 5	L 2
4	Explain the basic principles of GPS and its application in surveying.	CO 5	L 4
5	Define and explain EDM?	CO 5	L 2
6	Explain the working of remote sensing equipment.	CO 5	L 5
7	What are the advantages of LIDAR technology.	CO 5	L 2
8	Explain the working of total station.	CO 5	L 3
9	Explain the civil engineering applications in GIS and remote sensing.	CO 5	L 4
\mathbf{e}	Experiences	-	-
1		-	-
2			
3			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code: 18 CV45 Sem: $14 \quad$ Marks: 30 Time: 75 minutes

Course: Advanced surveying

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Mention the advantages of total station and also discuss the working principles of the same.	8	CO 5	L 3
	b	Define Remote sensing. Explain the stages of idealized remote sensing system.	7	CO 5	L 2
2	a	What is GIS? Enumerate on GIS applications in civil engineering.	8	CO 5	L 2
	b	Explain the basic principles of GPS and its application in surveying.	7	CO 5	L 3
3	a	Explain the working of remote sensing equipment.	8	CO 5	L 3
	b	What are the advantages of LIDAR technology.	7	CO 5	L 4
4	a	Define and explain EDM?	7	CO 5	L 3
	b	Explain the working of total station.	8	CO 5	L 3

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions											
Crs Code:	18CV45Advanced surveying		4	Marks:	10 / 10	Time:	90-120	minutes			
Course: Advanced surveying											
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.											
SNo			USN	Assignment Description					Marks	CO	Level
1		Mention the advantages of total station and also discuss the working principles of the same.					10	CO 5	L3		
2		Define Remote sensing. Explain the stages of idealized remote sensing system.					10	CO 5	L2		
3		What is GIS? Enumerate on GIS applications in civil					10	CO 5	L2		

		engineering.		
4	Explain the basic principles of GPS and its application in surveying.	10	CO 5	L 3
5	Define and explain EDM?	10	CO 5	L 3
6	Explain the working of remote sensing equipment.	10	CO 5	L 3
7	What are the advantages of LIDAR technology.	10	CO 5	L 4
8	Explain the working of total station.	10	CO 5	L 3

F. EXAM PREPARATION

1. University Model Question Paper

Cou		Advanced surveying				Month / Year		May /2018	
Crs Code:		18CV45	Sem:	4 Marks:	100	Time:		180 minutes	
-	Note	Answer all FIVE full questions. All questions carry equal marks.					Marks	CO	Level
1	a	Explain the following along with a neat sketch : i) Forward tangent ii) Point of curve iii) Deflection angle iv) Apex distance.					8	CO1	L1
	b	A reverse curve is to be set out to connect two parallel railway line 30m apart. The distance between the tangent points is I 50m. Both the arcs have the same radius. The curve is set out by method of ordinates from long chord taking a peg interval of 10m. Calculate the necessary data for setting the curve					8	CO 2	L5
		OR							
2	a	With a neat sketch, list any four vertical curves.					8	CO1	L3
	b	Two tangents intersect each other at a chainage of $50+60$, deflection angle being $50^{*} 30$ '. its required to connect two tangents by a simple curve of 15 chain radius. Taking peg inetrval of 100 links, calculate the necessary data for setting out the curve by Rankines method of deflection angle. Take length of the chain as $20 \mathrm{~m}=100$ links. Also write brief procedure for setting out the curve.					8	CO 2	L5
3	a	Mention the points to be considered in the selection of triangular station					8	CO 3	L1
	b	Triangulation station B was used in measuring angies and the instrument as necessary to shift to a satellite station S due south of main station B at a distance of 12.2111 from it. The line BS bisects the exterior angle $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and the angles ASB and BSC were observed to be $30^{\circ} 20^{\prime} 30^{\prime \prime}$ and $29^{\circ} 45^{\prime}$ $6^{\prime \prime}$. When the station B was observed angles CAB and ACB were observed to be $59^{\circ} 18^{\prime} 26^{\prime \prime}$ and $60^{\circ} 26^{\prime} 12^{\prime \prime}$. The side AC computed to be 4248.5 m from the adjacent triangle. Determine the correct value of the angle $A B C$.					8	CO 4	L3
		OR							
4	a	What are important factors considered to be in selection of site for a base line?					8	CO 3	L2
	b	The observed angles α, β and γ from a station P with probable errors of measurement are given below; $\alpha=78^{\circ} 12^{\prime} 12^{\prime \prime} \pm 12^{\prime \prime}, \beta=136^{\circ} 48^{\prime} 34^{\prime \prime} \pm 4^{\prime \prime}, \gamma^{+} 144^{\circ} 59^{\prime} 8 " \pm 5^{\prime \prime}$ determine their corrected values.					8	CO 4	L3
		OR							
5	a	Mention the properties of a spherical triangle.					8	CO_{5}	L3
	b	Find the shortest distance between two points A \& B, given A latitude $-18^{\circ} 24^{\prime} \mathrm{N}$ longitude $36^{\circ} 18 \mathrm{E}$ B latitude - $68^{\circ} 32^{\prime} \mathrm{N}$ longitude $126^{\circ} 34 \mathrm{E}$.					8	CO6	L3
		OR							
6	a	Mention the general features of Photographic images.					8	CO_{5}	L4
	b	Find the number of photography (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60% and the side overlap is 30% scale the photograph is $\mathrm{lcm}=150 \mathrm{~m}$.					8	CO6	L5
7	a	Find the number of photographLrs (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60% and the side overlap is 30% scale the photograph is $\mathrm{lcm}=150 \mathrm{~m}$.					8	CO 7	L4
	b	Derive an expression for relief displac~ment on a vertical photograph.					8	CO 8	L3

2. SEE Important Questions

3	1	Find the shortest distance between two points A \& B, given A latitude - $18^{\circ} 24^{\prime} \mathrm{N}$ longitude $36^{\circ} 18 \mathrm{E}$ B latitude - $68^{\circ} 32^{\prime} \mathrm{N}$ longitude $126^{\circ} 34 \mathrm{E}$.	$\begin{gathered} 16 / \\ 20 \end{gathered}$	CO5	2016
	2	Define the following : i) Vertical circle ii) Azimuth iii) Altitude.		CO 5	2016
	3	Explain Ecliptic and Solstices		CO5	20
	4	Find the shortest distance between two places A \& B given that the longitudes of A and B are $15^{\circ} \mathrm{O}^{\prime} \mathrm{N}$ and $12^{\circ} \cdot 6^{\prime} \mathrm{N}$ and longitudes are 50° $12^{\prime} \mathrm{E}$ and $54^{\circ} \mathrm{O}^{\prime}$ E respectively.		C06	2015
	5	Define the terms: I) celestial sphere ii) hour angle iii) prime vertical iv) latitude of a place		C06	2015
4	1	Find the number of photographLrs (size $250 \times 250 \mathrm{~mm}$) required to cover over a area of $20 \mathrm{~km} \times 16 \mathrm{~km}$ of the longitudinal overlap is 60% and the side overlap is 30% scale the photograph is $\mathrm{lcm}=150 \mathrm{~m}$.	$\begin{gathered} 16 / \\ 20 \end{gathered}$	C07	2017
	2	Derive an expression for relief displac \sim ment on a vertical photograph.		C07	2015
	3	Explain the procedure for aerial survey.		C08	016
	4	A vertical photograph was taken at a altitude of 1200 meters above mean sea level. Determine the scale of the photograph for a terrain lying at elevations of 80 meters and 300 meters if the focal length oft he camera is 15 cm .		C08	2015
	5	With a neat sketch, derive the expression for the scale of a vertical photograph.		C08	2016
5	1	Define Remote sensing. Explain the stages of idealized remote sensing system.	$\begin{gathered} 16 / \\ 20 \end{gathered}$	CO9	2015
	2	What is GIS? Enumerate on GIS applications in civil engineering.		CO9	2016
	3	Explain the basic principles of GPS and its application in surveying.		CO9	2017
	4	Define and explain EDM?		CO10	2016
	5	Explain the working of remote sensing equipment.		CO10	2017
	6	What are the advantages of LIDAR technology.		CO10	2016

Course Outcome Computation

Academic Year:
Odd / Even semester

INTERNAL TEST	T1						T2						T3			
Course Outcome	CO 1		CO 2		CO_{3}		CO 4		CO 5		CO6		CO7		CO8	
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV
MAX MARKS																
USN-1																
USN-2																
USN-3																
USN-4																
USN-5																
USN-6																
Average CO Attainment																

LV Threshold : 3:>60\%, 2:>=50\% and <=60\%, 1: <=49\%
CO1 Computation : $(2+2+2+3) / 4=10 / 4=2.5$

PO Computation

